Numerical analysis of a quadratic matrix equation
نویسنده
چکیده
The quadratic matrix equation AX2 + B X +C = 0 in n ×n matrices arises in applications and is of intrinsic interest as one of the simplest nonlinear matrix equations. We give a complete characterization of solutions in terms of the generalized Schur decomposition and describe and compare various numerical solution techniques. In particular, we give a thorough treatment of functional iteration methods based on Bernoulli’s method. Other methods considered include Newton’s method with exact line searches, symbolic solution and continued fractions. We show that functional iteration applied to the quadratic matrix equation can provide an efficient way to solve the associated quadratic eigenvalue problem (λ2 A + λB + C)x = 0.
منابع مشابه
Analytical aspects of the interval unilateral quadratic matrix equations and their united solution sets
This paper introduces the emph{interval unilateral quadratic matrix equation}, $IUQe$ and attempts to find various analytical results on its AE-solution sets in which $A,B$ and $CCC$ are known real interval matrices, while $X$ is an unknown matrix. These results are derived from a generalization of some results of Shary. We also give sufficient conditions for non-emptiness of some quasi-solutio...
متن کاملHaar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کاملThe use of inverse quadratic radial basis functions for the solution of an inverse heat problem
In this paper, a numerical procedure for an inverse problem of simultaneously determining an unknown coefficient in a semilinear parabolic equation subject to the specification of the solution at an internal point along with the usual initial boundary conditions is considered. The method consists of expanding the required approximate solution as the elements of the inverse quadrati...
متن کاملA note on unique solvability of the absolute value equation
It is proved that applying sufficient regularity conditions to the interval matrix $[A-|B|,A + |B|]$, we can create a new unique solvability condition for the absolute value equation $Ax + B|x|=b$, since regularity of interval matrices implies unique solvability of their corresponding absolute value equation. This condition is formulated in terms of positive deniteness of a certain point matrix...
متن کاملA Perron Iteration for the Solution of a Quadratic Vector Equation Arising in Markovian Binary Trees
We propose a novel numerical method for solving a quadratic vector equation arising in Markovian Binary Trees. The numerical method consists in a fixed point iteration, expressed by means of the Perron vectors of a sequence of nonnegative matrices. A theoretical convergence analysis is performed. The proposed method outperforms the existing methods for close-to-critical problems.
متن کامل